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Decision theory is founded on the principle that we ought to take the ac-
tion that has the maximum expected value from among actions we are in a
position to take. The idea traces back to seventeenth century French math-
ematicians such as Pascal and Fermat, and has been influential since. But
prior to the notion of expected value is the notion of the actual value of that
action: roughly, a measure of the good outcomes you would in fact procure if
you were to take it.

Philosophically speaking, the notion of actual value is surprisingly nuanced.
I will show that if the pretheoretic notion is in good standing, then there
will be many cases where the actual value of an action is indeterminate and
unknowable in principle. Nonetheless I believe the notion is in good standing
and offer a definition of it in terms of counterfactuals. By contrast, decision
theories that pay lip service to the principle that one should maximize expected
value typically offer no analysis of actual value, and subsequently do not clearly
conform to the principle of maximizing expected value. I show that a form of
decision theory due to Stalnaker can be reformulated so as to be in line with
the edict to maximize expected value.1 By contrast, I will prove that there is
no quantity that plays the role of actual value in the decision theory of Jeffrey
— whether given by my proposed definition of actual value or otherwise — and
so it cannot be similarly restated.2 I suggest this serves as a way of directly
motivating Stalnaker’s theory from a founding principle of decision theory,
rather than as a revision of it intended to solve Newcomb’s paradox as it is
sometimes presented.

*Thanks to Frank Hong and two anonymous referees for several helpful comments on
earlier drafts. Special thanks are due to Snow Zhang, who provided the characterization of
decision theories satisfying The Expectation Condition in the appendix.

1The canonical presentation of Stalnaker’s theory is Gibbard and Harper (1978); it was
first outlined in Stalnaker (1978).

2The canonical presentation of Jeffrey’s decision theory may be found in his book Jeffrey
(1983).
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1 Actual and Expected Value

The distinction between actual value and expected value is best introduced
by example. Suppose that a coin has been flipped but you do not know the
outcome. You are offered a bet that costs $1 and pays out $6 if the coin has
landed heads, and pays out nothing otherwise. As it happens the coin has
landed tails. So the actual value of the bet is in fact -$1: you must pay $1 to
participate but you will receive nothing because the coin has landed tails.

On the other hand, you do not know that the coin has landed tails. Given
what you know, there is a 50% chance that the coin has landed heads, and
in that case the actual value of the bet would be $5, since you have paid $1
and made $6. The expected value is what you get by taking an average of
the possible actual values of the bet, weighted by how likely you think those
actual values are: (0.5× $− 1) + (0.5× $5) = $2. Thus the expected value of
the bet is $2, even though the actual value of the bet is $-1. And indeed, given
your state of knowledge, the bet seems to be a good one and this is indeed
predicted by the available versions of decision theory out there.

The actual value of the proposition that you accept the bet is easy enough
to figure out from the description of the scenario. $-1 represents the amount of
money you would have ended up with if you had accepted the bet. Of course,
this counterfactual holds because the coin in fact landed tails: in a world where
the coin landed heads, the actual value of accepting the bet would have been
$5 — this is the amount of money I would have been better off by if I had
accepted the bet in this alternate world.

Observe also that the counterfactual in our explanation of actual value is
not idle: the actual value of accepting the bet is not the amount of money I
am in fact going to end up with after making my decision. It could be that,
for whatever reason, I decide not to take the bet — in which case the actual
amount of money I lose or gain is $0. But the actual value of accepting the
bet is still -$1, because that is what I would have made if I had accepted the
bet.3 Thus:

The actual value of an action is a measure of the good or bad outcomes
that would result if you were to take that action.

3In formal treatments of decision theory, the counterfactual nature of actual value is often
is hidden behind the formalism. For instance the framework of Savage (1954) a decision
problem is usually represented by a decision table whose columns are states and whose rows
are actions: the entry under a given state and action represents the outcome that would
result if you were to take that action in that state. Formally this is represented by a function
O which maps any pair of a state and an action to an outcome, O(s,A), informally glossed
as the outcome that would have obtained if you had performed action A in state s.
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Let us try and turn this into a definition of actual value suitable for mathe-
matical analysis. First some preliminaries. Let us assume, as usual, that an
agent’s desires can be represented by a utility function u : W → R mapping
possible worlds to real numbers. A possible world settles all matters and, ipso
facto, any matter the agent could possibly care about: u(w) can be understood
as a measure of the total amount of good or bad things that happen to the
agent in world w. Let an action proposition for an agent be a proposition
which the agent is in a position to make true, such as the proposition that you
accept or decline a bet. Note that the utility of a world is not the same as the
actual value of the action A at that world. This is simply a restatement of a
previous observation in new terminology, but it is worth reiterating: Assuming
you reject the bet, and have nothing else going on in your life, we may set the
utility of the actual world to 0 (pretending for the moment that utility scales
linearly with money, and choosing the obvious units), since you will in fact
neither lose nor gain anything. But the actual value of accepting the bet is
still -1.

We are now in a position to offer an analysis of the actual value of an action
proposition, A, based on our previous informal definition: it is the utility for
the agent of the way things would have been if A had been true. Given a
proposition A, we may write f(A,@) for the way things would have been if A
had been true, according to the actual world @. (f is thus a selection function
in the sense of Stalnaker (1968).) And the actual value of that proposition is
the utility of the way things would have been if A had been true:

Actual Value The actual value vA(@) of a proposition A is defined as the
utility of the world that would have obtained ifA had been true, u(f(A,@)).

We have observed above that the actual value of a proposition is highly contin-
gent: the actual value vA is really a function that has a world as an argument.
In a world w where the coin landed heads instead of tails prior to the bet being
offered, the actual value of the bet is $5 not -$1. The world that would have
obtained if I’d accepted the bet there, f(A,w), is a world where I pay $1 and
make $6 (and so is distinct from the world f(A,@)). So we have a different
number vA(w) := u(f(A,w)) representing the actual value in the world w:
the utility of the way things would have been if you had accepted the bet in
a world where the coin landed heads. In technical parlance, vA is a random
variable: it represents a contingent value which depends on the state of the
world.
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2 Actual Value Can Be Indeterminate

By contrast with the mathematically sophisticated notion of expected value,
the notion of actual value seems straightforward. However, consider a variant
of our example. Suppose that the payout is exactly the same as before — it
costs $1 and pays out $6 if the coin lands heads — except the coin will only
be flipped if you take the bet. And as it turns out you do not take the bet, so
the coin is not flipped. Indeed we can suppose that the coin is subsequently
destroyed before it is ever flipped. What is the actual value of accepting the
bet? The only reasonable answers are as before: -$1 or $5. But unlike the
previous case we cannot inspect the coin to see which it is. Nor can we flip
it later to see what the result would have been (assuming this would indeed
settle the question of how it would have landed if it had been flipped earlier
for the bet). And there seems to be no other way to figure out the answer to
the question of what the actual value is.

What does our proposed analysis have to say about this? Note that we
have taken sides on a contentious principle of conditional logic:

Conditional Excluded Middle (A� B) ∨ (A� ¬B)

This is a consequence of our implicit assumption that there is a particular world
representing the way things would have been if A had been true. And that
must either be a world where B holds, or not, so one of the two counterfactuals
A� B or A� ¬B holds.4

According to proponents of conditional excluded middle, even if you do not
in fact take the bet and the coin is never flipped, there is still a truth about
what would have happened if you had taken the bet and it had been flipped.
Either the coin would have landed heads if it had been flipped, or it would have
landed tails. So according to our definition, the actual value is still perfectly
well defined — it is either -$1 or $5 depending on which counterfactual is
true. But perhaps it is an inherently chancey or indeterminate matter which
of the two counterfactuals is true, in which case it is a similarly chancey or
indeterminate matter what the actual value is.

3 Expected Value

Let us set aside for the time being the question of whether our analysis of
actual value is correct. Let us suppose more neutrally that we have some

4Or else A is counterfactually inconsistent, and there is no such world. In this case,
everything would have been the case if A.
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random variable vA : W → R that maps each world to the actual value of
taking the action A at that world, so that vA just represents some contingent
value which depends on the state of the world. If we do not know what the
state of the world is, we will not know what the actual value is, but we can
calculate the expectation by taking a weighted average of the possible actual
values at each world weighted by how likely that world is according to your
degrees of belief. One’s degrees of belief may be represented by a probability
function P assigning probabilities to possible worlds in such a way that the
sum of the probabilities of all worlds adds up to 1.5 The expected value of A
is then:

Expected Value The expected value of an action A is the expectation of
that propositions value:

∑
w P (w)vA(w).

Some things worth emphasizing: First, nothing about our formula for expecta-
tion is specific to the quantity actual value. You can calculate the expectation
of any quantity you like in exactly the same manner: the expectation of to-
morrow’s temperature should be a weighted sum of the possible temperatures
weighted by how likely you presently think those temperatures are. Second,
you use your present degrees of belief about what the actual value, temper-
ature, etc will be to calculate the expectation — not your future degrees of
belief, someone else’s degrees of belief, or your degrees of belief conditional on
some supposition. Last, there is another salient quantity you can calculate the
expectation of: your utility function. The expectation of your utility function
is a measure of how good things are generally expected to be for you. But it
is not the expectation of the actual value of any particular action for as we
noted earlier the utility of a world is not always the same as the actual value
of an action at a world. Indeed, there is only one utility function, and there
are many actions, so the expectation of your utility function alone couldn’t
possibly help in comparing two or more prospects.

5I am assuming, for simplicity, that there are countably many worlds, and also taking a
stance on the question of countable additivity. The former of these assumptions could be
dropped by replacing summation, in what follows, with a suitable sort of integration. The
assumption of countable additivity, however, is more intimately entangled with the theory
of expectations. It would take us too far afield to try to disentangle it from that theory, and
I will make no attempt to do so here, even though I am generally sympathetic to many of
the worries people have about countable additivity.
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4 Expected Value as an Action Guiding Quan-

tity

Decision theory was founded on the idea that the proposition you ought to
make true is the one with maximum expected value. The fundamental prin-
ciple behind this claim traces back to Pascal and Fermat: when you have
the prospect of obtaining some good, the worth of that prospect should be
directly proportional to the probability that you will obtain that good.6 So,
for instance, a 1

2
probability of winning a free car should be half as good as

receiving a free car with certainty.
There are plenty of other quantities that an action might maximize, such

as actual value, or expected temperature, but these are not, on the view under
consideration, action guiding in the same way. Our starting point is thus:7

Maximize Expected Value The action guiding quantity is identical to the
expectation of actual value of an action.

I do not take this assumption to be incontrovertible, and I think there is
philosophical value in bringing it into question once in a while.8 I will not,
however, be doing so here: Here I will take this assumption for granted, and
see what upshots it has for two approaches to decision theory that offer real

6For the relevant history see, for instance, Ore (1960).
7I have stated the principle in terms of ‘action guidingness’ to make room for a variety

of responses to the question of what to do when there is not a unique action with maximum
expected value. Here is one possible answer in which expected value still plays an action
guiding role: When there are several propositions with maximal expected value, they are
all permissible. And when there is no proposition with maximal expected value, as can
happen when infinitely many actions are available, any action above a certain threshold is
permissible.

8One extremely natural alternative to Maximize Expected Value is the principle that
one should instead maximize actual value. A common objection to this alternative is that
this is not an edict one can follow: usually we do not know which action leads to the
maximum actual value. However, given the fact that we are rarely completely introspective
of our own mental states (famously argued, for instance, in Williamson (2000)), including
our own evidence, degrees of belief and desires, there will be cases where we do not know
which proposition has the maximum expected value either (Feldman (2006) makes a related
point). Of course, this alternative rejects the starting point of Pascal and Fermat, that the
value of a future gain is proportional to the probability of obtaining it, and so the Pascal-
Fermat principle can be taken to be a completely seperate argument against maximizing
actual value that does not rest of considerations of followability.
Another alternative, which also rejects our starting point, is that it is rational to be risk

averse, in which case the thing you should maximize is not expected value but a modification
which discounts for your tolerance to risk; see for instance the risk weighted expected utility
of Buchak (2013).
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valued quantities playing the action guiding role we have above ascribed to
expected value. The quantities are given, respectively, by:9

Stalnaker’s Formula S(A) =
∑

w P (A� w)u(w)

Jeffrey’s Formula J(A) =
∑

w P (w | A)u(w)

According to decision theories based on the former formula, it is the quantity S
that you ought to maximize when you are deciding what to do, and according
to decision theories based on the latter it is the quantity J that you ought to
maximize.

It is striking, however, that neither of these formulas have the mathematical
form of an expectation of another quantity. Stalnaker’s formula tells you
to take a weighted sum of utilities that is weighted not by your credences
in different worlds, but your credences in certain counterfactuals. Jeffrey’s
formula is also a weighted sum of utilities, but it is not weighted by your
degrees of belief — as an expectation should be — but rather by what your
degrees of belief would be if you were to learn that you performed the relevant
action. Moreover, both formulas are taking weighted sums of your utility
function, which we have already seen to be different from actual value.

Despite this, neither formula is obviously inconsistent with Maximize Ex-
pected Value. For all we have said, S(A) and J(A) can be rewritten so as to
be expectations of another quantity, vA. I will not presuppose any particular
analysis of vA in what follows, but rather focus on the constraint that some
such quantity exists whose expectation is J or S respectively. If such a quan-
tity does exists, we have at least a partial foundation for the notion of actual
value: we can “Ramsify” the theory, by treating talk of actual value as being
about the quantity, whatever it might be, whose expectation is action guiding.

Let’s begin with Stalnaker’s formula. S(A) is defined as the the sum, for
each world w, of the probability of A � w multiplied by the utility of w.
Now, the probability of A � w is the sum of the probability of the worlds
where this counterfactual is true.10 Since we previously abbreviated ‘w is the
world that would have obtained if A had been true at x’ (i.e. A� w is true
at x) with f(A, x) = w, we have that P (A� w) =

∑
f(A,x)=w P (x). So we

9Jeffrey’s formula is stated this way for ease of comparison with Stalnaker’s formula,
and with the notion of expected value. Jeffrey has an equivalent version of the equation
J(A) =

∑
i∈I P (Ai | A)J(Ai), whenever (Ai)i∈I is a partition of A. In Jeffrey’s framework

the utility of a world is identified with its Jeffrey value so that the two formulations are
equivalent.

10This is a consequence of countable additivity given our assumption that there are count-
ably many worlds.
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are looking at the sum, for worlds x and w such that f(A, x) = w, of the
probability of x times the utility of w. Simplifying a little, this is the sum for
all worlds x of the probability of x times the utility of f(A, x), which has the
form of an expectation.

S(A) =
∑
w

P (A� w)u(w) =
∑
w

∑
f(A,x)=w

P (x)u(w)

=
∑
x

P (x)u(f(A, x)) =
∑
x

P (x)vA(x)

So we have shown that S(A) my be rewritten as the expectation of some
random variable. Indeed, not any random variable: pleasingly, it is the ex-
pectation of actual value according to our earlier proposed definition of actual
value — vA(x) is the utility of the world that would have obtained if A had
been true at x, u(f(A, x)).

Now let us turn to Jeffrey’s formula: could there be a notion of actual value,
vA, whose expectation is always given by Jeffrey’s quantity J(A)? I will make
one assumption about actual value which I think follows from our motivating
remarks about it: the actual value of an action (unlike its expected value) does
not depend on your degrees of belief. In our running example, the actual value
of the bet is -$1 because the coin has in fact landed tails — this value does
not depend on how likely you think it is that the coin landed heads or tails.
Thus for any given utility function u and action proposition A there exists a
quantity vA such that for any probability function P for which P (A) > 0:11∑

w

P (w | A)u(w) =
∑
w

P (w)vA(w)

The order of the quantifiers here reflecting the fact that vA does not depend on
P , but can potentially depend on u and A. (Note of course that our proposed
definition of actual value does depend on both u and A, but does not depend on
P .) But it may be shown that there is no quantity that satisfies this condition
for every probability function, given the modest assumption that it is possible
to rationally prefer at least one proposition over another and that there are at
least three possible worlds. I have placed the proof in an appendix.

I suspect there is some room for improvement on this result. For one thing,
it is clear that the quantification over probability functions in our statement
that actual value is independent of probability could be restricted in various

11When P (A) = 0 Jeffrey’s formula is undefined so the restriction to actions with positive
probability is necessary. This is a well-known shortcoming of Jeffrey’s formula, because it
means we cannot apply decision theory in cases where we know what we’re going to do.
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ways without affecting the result, but unclear what the exact class of restric-
tions for which the result still holds is. Secondly, one might ask what decision
theories can be formulated in a way where the action guiding quantity is an
expectation of a quantity that is independent of your beliefs (in the sense
spelled out above). In personal communication Snow Zhang has provided a
fairly general answer to this question: among a very wide class of decision
theories, the theory’s action guiding quantity is an expectation of a quantity
that is independent of one’s degrees of belief if and only if it is a causal de-
cision theory based on a slight generalization of the Stalnakerian theory of
selection functions.12 A statement of this theorem may also be found in the
appendix. There is finally a question of generalizing this impossibility result
for evidential decision theory to other kinds of causal decision theory: for in-
stance Lewis (1981) and others have formulated versions of causal decision
theory that don’t presuppose conditional excluded middle. But the notion of
actual value seemingly requires you to talk about the things, good or bad, that
would have happened if you had taken an action; without conditional excluded
middle this way of talking would be ill-defined.13

Could one resist the assumption that actual value doesn’t depend on one’s
degrees of belief? To give up on this, in my view, is to give up on the distinction
between actual and expected value altogether. Once we have rejected the
pretheoretic notion of actual value, defined in terms of claims about how good
things would have been for you if you had taken certain courses of action, what
is left of the distinction between expected value and actual value? We know
the former quantity is the expectation of the latter quantity, and it is supposed
to be the operation of expectation that takes your subjective uncertainty into
account. This is already thin, and it is thinner still once we suppose that actual
value is something that already takes into account your uncertainty about the
world.

But some will no doubt maintain that this is the right moral to draw: the
pretheoretic notion of actual value is not in good standing, especially in light
of the widespread indeterminacy of actual value. John Broome, for instance,
has suggested that the only kind of value is expected value — a quantity which
is its own expectation, and thus plays the role of actual and expected value

12Personal communication, July 9, 2021
13Lewis’s theory, based on partitions of ‘causal dependency hypotheses’, for instance,

agrees with Jeffrey’s theory for agents certain about the true dependency hypothesis. Thus,
provided this dependency hypothesis satisfies the conditions of the appendix—it contains
at least three worlds and at least two with unequal utility—Lewis’s quantity is also subject
to our theorem.
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simultaneously.14 This assumption is also rejected by Konek and Levinstein
(2019), where they instead define actual value for Jeffrey decision theory in

terms of credences as vA(w) := P (w|A)
P (w)

u(w). It is easily seen that J(A) is
indeed the expectation of this quantity. However, once we let in quantities
that depend on one’s credences, there are many other such quantities: J(A)
is also the expectation of the constant function vA(w) = J(A) (note that
J(A) is defined in terms of P )—this is in effect the Broomian proposal—but
also infinitely many other cooked up quantities. This radical non-uniqueness
just illustrates how undemanding the relationship between actual value and
expected value is without the assumption that actual value is independent
of credences. By contrast, if we restrict to credence independent quantities,
then the notion of actual value is uniquely pinned down by its relationship to
expected value: for a given action and utility function there is at most one
quantity whose expectation relative to every probability function is identical
to its action worthiness relative to that utility function (see theorem 2 below).

5 Conclusion

Decision theory in the tradition of Stalnaker (1978) is often labeled ‘causal
decision theory’. These presentations typically introduce Stalnaker’s formula
as a revision of näıve decision theory that is required to deal with Newcomb’s
paradox — a revision that complicates the notion of expected value with causal
or counterfactual notions.15

The present way of motivating Stalnaker’s formula, by contrast, does not
invoke causation or Newcomb’s paradox or anything like that: it is motivated
by the founding principle of maximizing expected value. Counterfactuality en-
ters the picture because the notion of actual value is inherently counterfactual.

14See chapter 6 of Broome (1991). There are, however, some worries for this proposal: in
the presence of higher-order uncertainty, the expectation of the expectation of a quantity
can come apart from its expectation. For a quantity to be equal to its own expectation, it
either has to be trivial (i.e. have a constant value across worlds), or rule out certain patterns
of higher-order uncertainty which have the appearance of being perfectly rational. Suppose
vA is non-trivial and has different values at the worlds x and y, α and β, and imagine that
at world x you are 50/50 concerning whether world x or y obtains, but in world y you are
certain that y obtains. The expectation of vA at x and y is respectively 1

2α+ 1
2β and β. So

the expectation of the expectation at x is 1
2 (

1
2α + 1

2β) +
1
2β = 1

4α + 3
4β which is different

from 1
2α+ 1

2β, the expectation at x, since α ̸= β.
15See for instance Joyce (1999) p146, Lewis (1981) p13 or Weirich (2009).
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Appendix

Let W , the ‘worlds’, be a countable set containing at least three members.
Suppose that V (P,A, u) (‘action worthiness’) is a real valued quantity that
depends on a countably additive probability function on W , P , a set of worlds
A (the ‘action proposition’), and a utility function u : W → R. V is an
expectation of a credence independent quantity iff:

The Expectation Condition For every utility function u and proposition
A, there exists a quantity v : W → R such that for every probability
function P : V (P,A, u) =

∑
w∈W P (w)v(w).

Theorem 1. Jeffrey’s quantity, J(P,A, u) =
∑

w P (w | A)u(w) does not
satisfy The Expectation Condition.

Proof. Suppose that Jeffrey’s theory can recommend one proposition over an-
other. There is a rational credence utility function pair, P and u, and pair of in-
compatible propositions X and Y such that the resulting Jeffrey values are dif-
ferent: J(X) ̸= J(Y ). We may assume too that such an X and Y may be cho-
sen so that X∪Y is not the whole space. Let A = X∪Y . Now let S = {P ′ | P ′

is a probability function such that P ′(Y ) = 0 and P ′(· | X) = P (· | X)}. For
any P ′ ∈ S we have that J ′(X) = J(X) where J ′ is the Jeffrey value with
respect to P ′ and u (since J ′(X) =

∑
w P ′(w | X)u(x) =

∑
w P (w | X)u(x) =

J(X)). So for every P ′ ∈ S,
∑

w P ′(w)vA(w) has a fixed value J(X), because∑
w P ′(w)vA(w) =

∑
w P ′(w | A)u(w) =

∑
w P ′(w | X)u(w) = J ′(X) = J(X).

The first identity follows from our hypothesis that the expectation (according
to P ′) of actual value of A is identical to its Jeffrey value, and the second
identity because P ′(Y ) = 0 and thus P ′(· | A) = P ′(· | X ∪ Y ) = P ′(· | X).
Now this can happen only if vA(w) = J(X) for every w ̸∈ A. For if there
are worlds such that vA(w) > J(X) you could choose a probability function
P ′ ∈ S that assigns lots of probability to the worlds w ̸∈ A that have actual
value that exceeds J(X) (vA(w) > J(X)), and assigns little probability to the
remaining worlds, so ensuring that

∑
w P ′(w)vA(w) > J(X) contradicting our

previously established claim.16 For similar reasons, there cannot be worlds

16This can be broken up into two claims. Suppose that X and Y are as above, and
Z and U partition W \ A into two non-empty sets. First, for any positive α and β with
α + β < 1 we can construct a probability function P ′ such that P ′(Z) = α, P ′(U) = β,
P (Y ) = 0 and is such that P ′(· | X) = P (· | X) (the last two conditions simply ensure
that P ′ ∈ S). Namely assign probabilities to worlds in Z that add up to α, probabilities to
worlds in U that add up to β, assign 0 probability to worlds in Y , and for worlds x ∈ X set

P ′(x) = (1−α−β).P (x)
P (X) . Now if vA(w) > J(X) for some w, we may pick some ϵ > 0 and let
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such that vA(w) < J(X). But then by parallel reasoning — switching X and
Y in all of the above — we can see that vA(w) = J(Y ) for every w ̸∈ A, so
we have a contradiction since J(X) ̸= J(Y ) and we assumed that W \ A was
non-empty.17

Fix an action A and a utility function u. Say that a quantity v : W → R
satisfies the actual value role, with respect to action worthiness, V (P,A, u), if
and only if V (P,A, u) is the expectation of v for every probability function P :
for every P , V (P,A, u) =

∑
w P (w)v(w).

Theorem 2. At most one quantity satisfies the actual value role with respect
to a given measure of action worthiness, V (P,A, u).

Proof. Suppose v and v′ satisfy the actual value role with respect to V (P,A, u).
Let w be an arbitrary world, and let Pw be the probability distribution that
is certain in w. Then V (P,A, u) =

∑
x Pw(x)v(x) = v(w) and V (P,A, u) =∑

x Pw(x)v
′(x) = v′(w), and so v(w) = v′(w). Since w was arbitrary v =

v′.

Assume for simplicity that W is now finite. Let a supposition proce-
dure be a function s that maps a probability distribution P and a propo-
sition A to another probability distribution, s(P,A) such that s(P,A)(A) = 1.
Bayesian conditioning, given by s(P,A) = P (· | A), and imaging, given by
s(P,A) = P (A� ·), are two examples of supposition procedures. Supposi-
tion procedures give rise to a very general class of decision theories where the

Z = {w | vA(w) ≥ J(X) + ϵ}; and it is just a matter of choosing α to be big enough that
the expectation of the Z part of logical space swamps the rest. For instance we could set

β = 0 and α > J(X)−γ
J(X)−γ+ϵ where γ =

∑
x P (x | X)vA(x). γ may be proved to be finite since

γ =
∑

x P (x | X)vA(x) =
∑

x P (x | X)u(x) by plugging the probability function P (· | X)
into our relationship between Jeffrey value and expected value. But the last value is just
J(X) which we know to be finite.

17Since submitting this article I have learned that Ahmed and Spencer (2020) have pro-
vided a different argument that, in certain special cases, Jeffrey value is not an expectation.
The sorts of cases their arguments concern are somewhat unusual because they involve situ-
ations where learning that you are going to take a course of action provides evidence about
the actual value of that action. Now usually, learning what you are going to do provides
no evidence about that actions actual value: whether you accept the bet I outlined in the
introduction has no evidential bearing on how the coin will land, and thus on whether you
will win the bet. For better or for worse, many decision theorists, following Savage (1954),
have built this independence assumption into their framework. Whether or not this is a
good idea, it is clear that these decision theories are applicable in most cases. Crucially,
the argument presented above is not restricted to these unusual cases: it shows that Jeffrey
value cannot be an expectation even if you make the sorts of idealizations common among
decision theorists working in the tradition of Savage.
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action guiding quantity is defined by taking the expectation of u relative to
the supposition that you have taken action A:

Vs(P,A, u) :=
∑

w s(P,A)(w)u(w)

Among this general class of decision theories is Jeffrey’s decision theory (where
s is Bayesian conditioning) and certain ‘causal decision theories’ where s
is determined by a generalized kind of selection function. A general imag-
ing function (see Gardenfors (1982)) is a function f that maps a proposi-
tion A and a world w to a probability distribution f(A,w) that assigns A
probability 1 (f(A,w)(A) = 1) (a Stalnakerian selection function may be
thought of as the special case where f(A,w) assigns some world probabil-
ity 1). The supposition procedure corresponding to a general imaging func-
tion is s(P,A)(B) =

∑
w f(A,w)(B)P (w), and the corresponding version of

causal decision theory is given by the action guiding quantity Vs(P,A, u) de-
fined above. Say that a general decision theory is one whose action guiding
quantity has the form Vs(P,A, u) for some supposition procedure s. A general
decision theory satisfies The Expectation Condition if Vs(P,A, u) does, and is
a Stalnakerian causal decision theory if s is determined by a general imaging
function.

Theorem 3 (Zhang). A general decision theory satisfies The Expectation Con-
dition if and only if it is a Stalnakerian causal decision theory.
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